Generative adversarial networks (GANs) are recently highly successful in generative applications involving images and start being applied to time series data. Here we describe EEG-GAN as a framework to generate electroencephalographic (EEG) brain signals. We introduce a modification to the improved training of Wasserstein GANs to stabilize training and investigate a range of architectural choices critical for time series generation (most notably up- and down-sampling). For evaluation we consider and compare different metrics such as Inception score, Frechet inception distance and sliced Wasserstein distance, together showing that our EEG-GAN framework generated naturalistic EEG examples. It thus opens up a range of new generative application scenarios in the neuroscientific and neurological context, such as data augmentation in brain-computer interfacing tasks, EEG super-sampling, or restoration of corrupted data segments. The possibility to generate signals of a certain class and/or with specific properties may also open a new avenue for research into the underlying structure of brain signals.
翻译:生成对抗性网络(GANs)最近在涉及图像的基因应用方面非常成功,并开始应用于时间序列数据。我们在这里将EEG-GAN描述为生成电子脑光学脑信号的框架。我们修改瓦塞尔斯坦GANs的改进培训,以稳定培训和调查对时间序列生成至关重要的一系列建筑选择(主要是上下取样);为了评估,我们考虑并比较不同指标,如受孕分、Frechet 初始距离和切片瓦塞斯坦距离,同时表明我们的EEEG-GAN框架生成了自然的EEG实例,从而打开了神经科学和神经背景下一系列新的基因应用情景,例如大脑计算机互换任务、EEG超抽样或恢复腐败数据段的数据增强。生成某类和(或)特定特性信号的可能性也为大脑信号基础结构的研究开辟了新的途径。