In this note we prove sharp lower error bounds for numerical methods for jump-diffusion stochastic differential equations (SDEs) with discontinuous drift. We study the approximation of jump-diffusion SDEs with non-adaptive as well as jump-adapted approximation schemes and provide lower error bounds of order $3/4$ for both classes of approximation schemes. This yields optimality of the transformation-based jump-adapted quasi-Milstein scheme.
翻译:在本说明中,我们证明对不连续漂移的跳式扩散随机差分方程式(SDEs)的数字方法的错误度极低。我们研究了与非适应性和非跳式适应性调整近似方案一起跳式扩散 SDEs的近似值,并为两种近似方案提供了3/4美元的低误差值。这产生了基于转换的跳跃适应准Milstein方案的最佳性。</s>