Angle of arrival (AOA) is widely used to locate a wireless signal emitter in unmanned aerial vehicle (UAV) localization. Compared with received signal strength (RSS) and time of arrival (TOA), it has higher accuracy and is not sensitive to time synchronization of the distributed sensors. However, there are few works focused on three-dimensional (3-D) scenario. Furthermore, although maximum likelihood estimator (MLE) has a relatively high performance, its computational complexity is ultra high. It is hard to employ it in practical applications. This paper proposed two multiplane geometric center based methods for 3-D AOA in UAV positioning. The first method could estimate the source position and angle measurement noise at the same time by seeking a center of the inscribed sphere, called CIS. Firstly, every sensor could measure two angles, azimuth angle and elevation angle. Based on that, two planes are constructed. Then, the estimated values of source position and angle noise are achieved by seeking the center and radius of the corresponding inscribed sphere. Deleting the estimation of the radius, the second algorithm, called MSD-LS, is born. It is not able to estimate angle noise but has lower computational complexity. Theoretical analysis and simulation results show that proposed methods could approach the Cramer-Rao lower bound (CRLB) and have lower complexity than MLE.


翻译:角度到达(AOA)被广泛用于定位无人机(UAV)中的无线信号发射器。与接收信号强度(RSS)和到达时间(TOA)相比,它具有更高的准确性,且不受分布式传感器的时间同步的影响。然而,针对三维场景的研究还不多。此外,尽管最大似然估计器(MLE)具有相对较高的性能,但其计算复杂度非常高。难以在实际应用中使用。本文提出了两种基于多平面几何中心的三维AOA方法用于UAV定位。第一种方法可以通过寻求内切球心(CIS)来同时估计源位置和角度测量噪声。首先,每个传感器可以测量两个角度,方位角和俯仰角。基于此,构造了两个平面。然后,通过寻找相应内切球的圆心和半径,得到源位置和角度噪声的估计值。删除了半径估计后,第二个算法MSD-LS就诞生了。它不能估计角度噪声,但具有较低的计算复杂度。理论分析和仿真结果表明,所提出的方法可以接近Cramer-Rao下界(CRLB),且比MLE具有更低的复杂度。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员