During the COVID-19 coronavirus epidemic, almost everyone is wearing masks, which poses a huge challenge for deep learning-based face recognition algorithms. In this paper, we will present our \textbf{championship} solutions in ICCV MFR WebFace260M and InsightFace unconstrained tracks. We will focus on four challenges in large-scale masked face recognition, i.e., super-large scale training, data noise handling, masked and non-masked face recognition accuracy balancing, and how to design inference-friendly model architecture. We hope that the discussion on these four aspects can guide future research towards more robust masked face recognition systems.
翻译:暂无翻译