A variety of methods exist to explain image classification models. However, whether they provide any benefit to users over simply comparing various inputs and the model's respective predictions remains unclear. We conducted a user study (N=240) to test how such a baseline explanation technique performs against concept-based and counterfactual explanations. To this end, we contribute a synthetic dataset generator capable of biasing individual attributes and quantifying their relevance to the model. In a study, we assess if participants can identify the relevant set of attributes compared to the ground-truth. Our results show that the baseline outperformed concept-based explanations. Counterfactual explanations from an invertible neural network performed similarly as the baseline. Still, they allowed users to identify some attributes more accurately. Our results highlight the importance of measuring how well users can reason about biases of a model, rather than solely relying on technical evaluations or proxy tasks. We open-source our study and dataset so it can serve as a blue-print for future studies. For code see, https://github.com/berleon/do_users_benefit_from_interpretable_vision
翻译:现有多种方法来解释图像分类模型。 但是,在仅仅比较各种投入和模型各自的预测方面,它们是否为用户带来任何好处,只是比较各种投入和模型各自的预测还不清楚。我们进行了一项用户研究(N=240),以对照基于概念和反事实的解释测试这种基线解释技术如何发挥作用。为此,我们贡献了一个合成数据集生成器,能够偏向个人属性,并量化其与模型的相关性。在一项研究中,我们评估参与者能否确定与地面真相相比的一组相关属性。我们的结果显示,基线比概念上的解释效果要好。一个不可忽略的神经网络的反事实解释与基线相似。他们仍然允许用户更准确地确定某些属性。我们的结果突出表明,衡量用户如何充分理解模型的偏差,而不仅仅是技术评价或代用任务。我们打开了我们的研究和数据集,以便作为未来研究的蓝图。关于代码,见https://github.com/berleon/do_userview_fect_fect_interpretable_visat_visat_vision。