The Gray-Scott model is a set of reaction-diffusion equations that describes chemical systems far from equilibrium. Interest in this model stems from its ability to generate spatio-temporal structures, including pulses, spots, stripes, and self-replicating patterns. We consider an extension of this model in which the spread of the different chemicals is assumed to be nonlocal, and can thus be represented by a convolution term. In particular, we focus on the case of strictly positive, symmetric, $L^1$ convolution kernels that have a finite second moment. Modeling the equations on a finite interval, we prove the existence of small-time weak solutions in the case of nonlocal Dirichlet and Neumann boundary constraints. We then use this result to develop a finite element numerical scheme that helps us explore the effects of nonlocal diffusion on the formation of pulse solutions.
翻译:Gray-Scott模型是一组反映化学系统离均衡很远的反扩散方程式。 对这个模型的兴趣来自它生成时空结构的能力,包括脉搏、斑点、条纹和自我复制模式。 我们考虑这一模型的延伸,其中不同化学品的传播假定不当地,因此可以由一个变异术语来代表。 特别是, 我们侧重于严格正对称、 $L ⁇ 1$的共聚内核, 其时间间隔有限。 模拟这些方程式在有限的间距上, 我们证明在非本地的迪里赫特和纽曼边界限制下存在小时期薄弱的解决方案。 我们随后利用这一结果开发一个有限元素数字计划, 帮助我们探索非本地扩散对脉冲解决方案形成的影响。