Inspired by the emergent 3D capabilities in image generators, we explore whether video generators similarly exhibit 3D awareness. Using structure-from-motion (SfM) as a benchmark for 3D tasks, we investigate if intermediate features from OpenSora, a video generation model, can support camera pose estimation. We first examine native 3D awareness in video generation features by routing raw intermediate outputs to SfM-prediction modules like DUSt3R. Then, we explore the impact of fine-tuning on camera pose estimation to enhance 3D awareness. Results indicate that while video generator features have limited inherent 3D awareness, task-specific supervision significantly boosts their accuracy for camera pose estimation, resulting in competitive performance. The proposed unified model, named JOG3R, produces camera pose estimates with competitive quality without degrading video generation quality.
翻译:暂无翻译