Results on existing LLM benchmarks capture little information over the model capabilities in low-resource tasks, making it difficult to develop effective solutions in these domains. To address these challenges, we curated 14 travel-domain datasets spanning 7 common NLP tasks using anonymised data from real-world scenarios, and analysed the performance across LLMs. We report on the accuracy, scaling behaviour, and reasoning capabilities of LLMs in a variety of tasks. Our results confirm that general benchmarking results are insufficient for understanding model performance in low-resource tasks. Despite the amount of training FLOPs, out-of-the-box LLMs hit performance bottlenecks in complex, domain-specific scenarios. Furthermore, reasoning provides a more significant boost for smaller LLMs by making the model a better judge on certain tasks.
翻译:暂无翻译