A proper $k$-coloring of a graph $G$ is a \emph{neighbor-locating $k$-coloring} if for each pair of vertices in the same color class, the two sets of colors found in their respective neighborhoods are different. The \textit{neighbor-locating chromatic number} $\chi_{NL}(G)$ is the minimum $k$ for which $G$ admits a neighbor-locating $k$-coloring. A proper $k$-vertex-coloring of a graph $G$ is a \emph{locating $k$-coloring} if for each pair of vertices $x$ and $y$ in the same color-class, there exists a color class $S_i$ such that $d(x,S_i)\neq d(y,S_i)$. The locating chromatic number $\chi_{L}(G)$ is the minimum $k$ for which $G$ admits a locating $k$-coloring. Our main results concern the largest possible order of a sparse graph of given neighbor-locating chromatic number. More precisely, we prove that if $G$ has order $n$, neighbor-locating chromatic number $k$ and average degree at most $2a$, where $2a\le k-1$ is a positive integer, then $n$ is upper-bounded by $\mathcal{O}(a^2(k^{2a+1}))$. We also design a family of graphs of bounded maximum degree whose order is close to reaching this upper bound. Our upper bound generalizes two previous bounds from the literature, which were obtained for graphs of bounded maximum degree and graphs of bounded cycle rank, respectively. Also, we prove that determining whether $\chi_L(G)\le k$ and $\chi_{NL}(G)\le k$ are NP-complete for sparse graphs: more precisely, for graphs with average degree at most 7, maximum average degree at most 20 and that are $4$-partite. We also study the possible relation between the ordinary chromatic number, the locating chromatic number and the neighbor-locating chromatic number of a graph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月19日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员