Device free human gesture recognition with Radio Frequency signals has attained acclaim due to the omnipresence, privacy protection, and broad coverage nature of RF signals. However, neural network models trained for recognition with data collected from a specific domain suffer from significant performance degradation when applied to a new domain. To tackle this challenge, we propose an unsupervised domain adaptation framework for device free gesture recognition by making effective use of the unlabeled target domain data. Specifically, we apply pseudo labeling and consistency regularization with elaborated design on target domain data to produce pseudo labels and align instance feature of the target domain. Then, we design two data augmentation methods by randomly erasing the input data to enhance the robustness of the model. Furthermore, we apply a confidence control constraint to tackle the overconfidence problem. We conduct extensive experiments on a public WiFi dataset and a public millimeter wave radar dataset. The experimental results demonstrate the superior effectiveness of the proposed framework.
翻译:由于射频信号无处不在、隐私保护以及射频信号广泛覆盖的性质,对无线电频率信号的装置自由人类手势识别已大受欢迎。然而,在应用到新域时,经过培训的神经网络模型在通过特定领域收集的数据确认方面有显著的性能退化。为了应对这一挑战,我们提议建立一个不受监督的域适应框架,以便通过有效利用无标签目标域数据,对装置自由手势识别。具体地说,我们应用假标签和一致性规范,对目标域数据进行详细设计,以产生假标签和对目标域域的示例特征。然后,我们通过随机删除输入数据来设计两种数据增强能力的方法,以加强模型的稳健性。此外,我们采用信任控制限制来应对过度信任问题。我们就公共WIFi数据集和公共毫米波雷达数据集进行了广泛的实验。实验结果显示拟议框架的超强效力。