Recent large-scale T2I models like DALLE-3 have made progress in reducing gender stereotypes when generating single-person images. However, significant biases remain when generating images with more than one person. To systematically evaluate this, we propose the Paired Stereotype Test (PST) framework, which queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities, respectively (e.g. "a CEO" and "an Assistant"). This contrastive setting often triggers T2I models to generate gender-stereotyped images. Using PST, we evaluate two aspects of gender biases -- the well-known bias in gendered occupation and a novel aspect: bias in organizational power. Experiments show that over 74% images generated by DALLE-3 display gender-occupational biases. Additionally, compared to single-person settings, DALLE-3 is more likely to perpetuate male-associated stereotypes under PST. We further propose FairCritic, a novel and interpretable framework that leverages an LLM-based critic model to i) detect bias in generated images, and ii) adaptively provide feedback to T2I models for improving fairness. FairCritic achieves near-perfect fairness on PST, overcoming the limitations of previous prompt-based intervention approaches.
翻译:暂无翻译