Time Varying Functional Connectivity (TVFC) investigates how the interactions among brain regions vary over the course of an fMRI experiment. The transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort as measured by pupil dilation. In this paper, we develop a multi-subject Bayesian framework for estimating dynamic functional networks as a function of time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach, where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states, borrowing strength over the entire time course of the experiment. The state-transition probabilities are assumed to vary over time and across subjects, as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. Our modeling approach further assumes sparsity in the network structures, via shrinkage priors. We achieve edge selection in the estimated graph structures, by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, leading us to assess the heterogeneity of the effects of changes in pupil dilation, previously linked to changes in norepinephrine-containing locus coeruleus, on the subjects' propensity to change connectivity states.


翻译:功能互连性( TVFC) 调查大脑区域之间的相互作用在FMRI实验过程中是如何变化的。 不同的个体互连性国家之间的过渡可以通过驱动功能网络动态的内在生理机制的变化来调节, 例如,通过学生变相测量的注意力或认知努力的变化。 在本文中, 我们开发了一个多主题的贝叶斯框架, 用于估算动态功能网络, 作为时间变化的外生生理共变函数的函数, 在FMRI实验中每个主题同时记录。 更具体地说, 我们考虑一种动态高斯的图形模型方法, 使用非相异的隐藏的马尔科夫模型将FMRI时间序列分类到潜在的神经系统状态, 在整个实验过程中, 将注意力变化或认知努力的强度借用。 作为基础变异函数的函数, 允许对经常连连通性模式进行估计, 以及各主体之间网络的共享。 我们的建模方法进一步假设网络结构的封闭性, 通过缩缩前的轨迹隐隐隐隐性模式, 我们的深度选择了前期的测算模型, 在测算模型结构中, 我们的测算中, 我们的测算的测算中, 的测算中, 我们的测序的测算的测序的测算的测算框架 采用了了我们测算中, 的测算的测算 的测算的测算的测算的测算结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构,, 的测测算了我们用测算了我们的测算的测算中, 的测算了我们用测算了我们用测测测测算了我们的测测算了我们测测测测测算了我们测测测测测测测的测的测的测测测的测测测测测测测测测算结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员