Artifacts in functional MRI (fMRI) data cause deviations from common distributional assumptions, introduce spatial and temporal outliers, and reduce the signal-to-noise ratio of the data -- all of which can have negative consequences for downstream statistical analysis. Scrubbing is a technique for excluding fMRI volumes thought to be contaminated by artifacts and generally comes in two flavors. Motion scrubbing based on subject head motion-derived measures is popular but suffers from a number of drawbacks, especially high rates of censoring of individual volumes and entire subjects. Alternatively, data-driven scrubbing methods like DVARS are based on observed noise in the processed fMRI timeseries and may avoid some of these issues. Here we propose "projection scrubbing", a novel data-driven scrubbing method based on a statistical outlier detection framework and strategic dimension reduction, including independent component analysis (ICA), to isolate artifactual variation. We undertake a comprehensive comparison of motion scrubbing with data-driven projection scrubbing and DVARS. We argue that an appropriate metric for the success of scrubbing is maximal data retention subject to reasonable performance on typical benchmarks of functional connectivity. We find that stringent motion scrubbing yields worsened validity, worsened reliability, and produced small improvements to fingerprinting. Meanwhile, data-driven scrubbing methods tend to yield greater improvements to fingerprinting while not generally worsening validity or reliability. Importantly, however, data-driven scrubbing excludes a fraction of the number of volumes or entire sessions compared to motion scrubbing. The ability of data-driven fMRI scrubbing to improve data retention without negatively impacting the quality of downstream analysis has major implications for sample sizes in population neuroscience research.
翻译:功能 MRI (fMRI) 数据中的“ 异形” 功能性 MRI (fMRI) 数据导致偏离共同的分发假设,引入了空间和时间外出器,并降低了数据的信号到噪音比率 -- -- 所有这些都可能对下游统计分析产生负面后果。 擦拭是一种将FMRI数量排除出去的技术,认为该数量受到工艺品的污染,一般分为两种口味。 基于主题头部运动制定的措施进行洗涤是受欢迎的,但有一些缺点,特别是审查单个数量和整个主题的高比率。 或者,像DVARRS这样的数据驱动洗涤方法是基于经过处理的FMRI时间序列中观察到的噪音,并降低了数据的信号比比对可靠性的信号,我们建议“预测洗涤”是一种新的数据驱动洗涤方法,其基础是统计外观检测框架和战略层面的减少,包括独立组成部分分析(ICA),以隔离定型变化。 我们将运动洗涤工作与数据驱动的预测、改进质量和DVARS 进行全面比较。 我们说, 洗涤工作成功的整个标准是比标准性分析最强的准确性, 数据比重性分析比重性分析比重性数据比重性分析比重数据比重, 数据比重性更精确性数据比重,但基本数据比重数据比重数据比重数据比重数据比重, 数据比重数据比重数据比重数据比重, 数据比重数据比重数据比比比比比比重, 数据比比重 数据 数据 数据比重 数据比比比比重数据比重 数据比重 数据比重比重 数据比重 数据比重 数据比重 数据比重 数据比重数据比重 数据比重 数据比重 数据比重 数据比重 数据比比比比比比比比比比比比比比比比比比比比比比重 数据比比比比比比比比比比重比重比比比比重比重比重比比重比比重 数据比重比重比重 数据比重 数据比重 数据比重 数据比重比重 数据比重比重 数据比重 数据比重