An error correcting code ($\mathsf{ECC}$) allows a sender to send a message to a receiver such that even if a constant fraction of the communicated bits are corrupted, the receiver can still learn the message correctly. Due to their importance and fundamental nature, $\mathsf{ECC}$s have been extensively studied, one of the main goals being to maximize the fraction of errors that the $\mathsf{ECC}$ is resilient to. For adversarial erasure errors (over a binary channel) the maximal error resilience of an $\mathsf{ECC}$ is $\frac12$ of the communicated bits. In this work, we break this $\frac12$ barrier by introducing the notion of an interactive error correcting code ($\mathsf{iECC}$) and constructing an $\mathsf{iECC}$ that is resilient to adversarial erasure of $\frac35$ of the total communicated bits. We emphasize that the adversary can corrupt both the sending party and the receiving party, and that both parties' rounds contribute to the adversary's budget. We also prove an impossibility (upper) bound of $\frac23$ on the maximal resilience of any binary $\mathsf{iECC}$ to adversarial erasures. In the bit flip setting, we prove an impossibility bound of $\frac27$.
翻译:错误校正代码 ($\ mathsf{ECC}$) 使发件人能够向接收者发送信息, 以至于即使通信位数的固定部分部分被损坏, 接收者仍然可以正确学习信息。 $\ mathsf{ECC} $ 。 由于其重要性和根本性质, $\ mathsfsf{ECC} $ 得到了广泛的研究, 主要目标之一是最大限度地增加 $mathsf{ECC} 所适应的错误部分。 对于对抗性消除错误( 在一个双向频道 ), $\ mathsf{EC} 的最大错误应变能力是 发送方和接收方的元数中的 $\ frac12$。 在这项工作中, 我们通过引入交互错误校正代码 (\ mathsffsf{EC} $) 的概念来打破这个障碍 。 创建 $mathfsffsf{EC} $ 以适应性对抗性差错部分的错误部分, $\ franc 35$ 。 我们强调敌对方可以腐蚀发送方和接收方 $xlexxxxxxxxxxxxxxxxxxxxxxx