In this paper, combinatorial quantitative group testing (QGT) with noisy measurements is studied. The goal of QGT is to detect defective items from a data set of size $n$ with counting measurements, each of which counts the number of defects in a selected pool of items. While most literatures consider either probabilistic QGT with random noise or combinatorial QGT with noiseless measurements, our focus is on the combinatorial QGT with noisy measurements that might be adversarially perturbed by additive bounded noises. Since perfect detection is impossible, a partial detection criterion is adopted. With the adversarial noise being bounded by $d_n = \Theta(n^\delta)$ and the detection criterion being to ensure no more than $k_n = \Theta(n^\kappa)$ errors can be made, our goal is to characterize the fundamental limit on the number of measurement, termed \emph{pooling complexity}, as well as provide explicit construction of measurement plans with optimal pooling complexity and efficient decoding algorithms. We first show that the fundamental limit is $\frac{1}{1-2\delta}\frac{n}{\log n}$ to within a constant factor not depending on $(n,\kappa,\delta)$ for the non-adaptive setting when $0<2\delta\leq \kappa <1$, sharpening the previous result by Chen and Wang [2]. We also provide an explicit construction of a non-adaptive deterministic measurement plan with $\frac{1}{1-2\delta}\frac{n}{\log_{2} n}$ pooling complexity up to a constant factor, matching the fundamental limit, with decoding complexity being $o(n^{1+\rho})$ for all $\rho > 0$, nearly linear in $n$, the size of the data set.
翻译:在本文中, 正在研究有噪音测量的组合组测试 { QGT 。 QGT 的目标是从一个尺寸为$n的数据集中检测有缺陷的物品, 以计数测量, 每一个都计算选定项目库中的缺陷数量。 虽然大多数文献都考虑使用随机噪音或无噪音测量的组合式QGT, 我们的目标是确定测量数量的基本限值, 称为 emph{ 集合的复杂程度 。 由于检测不可能完美, 采用了部分检测标准。 对抗性噪音由 $d_ nn =\ Theta (ndelta) 标定, 且检测标准确保不大于 $k_n =\\\ tata(nkappoppa) 值, 我们的目标是确定测量数量的基本限值, 称为 emph { 集合的复杂程度 ; 以及提供精确的测量计划构造, 最优化的集合复杂性和高效的解析算值。 我们首先显示, 基底限是 $\\\\\\\ xxx 的基值, 值设置一个固定的 值值值值值值值值值值值, 。