In this paper, combinatorial quantitative group testing (QGT) with noisy measurements is studied. The goal of QGT is to detect defective items from a data set of size $n$ with counting measurements, each of which counts the number of defects in a selected pool of items. While most literatures consider either probabilistic QGT with random noise or combinatorial QGT with noiseless measurements, our focus is on the combinatorial QGT with noisy measurements that might be adversarially perturbed by additive bounded noises. Since perfect detection is impossible, a partial detection criterion is adopted. With the adversarial noise being bounded by $d_n = \Theta(n^\delta)$ and the detection criterion being to ensure no more than $k_n = \Theta(n^\kappa)$ errors can be made, our goal is to characterize the fundamental limit on the number of measurement, termed \emph{pooling complexity}, as well as provide explicit construction of measurement plans with optimal pooling complexity and efficient decoding algorithms. We first show that the fundamental limit is $\frac{1}{1-2\delta}\frac{n}{\log n}$ to within a constant factor not depending on $(n,\kappa,\delta)$ for the non-adaptive setting when $0<2\delta\leq \kappa <1$, sharpening the previous result by Chen and Wang [2]. We also provide an explicit construction of a non-adaptive deterministic measurement plan with $\frac{1}{1-2\delta}\frac{n}{\log_{2} n}$ pooling complexity up to a constant factor, matching the fundamental limit, with decoding complexity being $o(n^{1+\rho})$ for all $\rho > 0$, nearly linear in $n$, the size of the data set.


翻译:在本文中, 正在研究有噪音测量的组合组测试 { QGT 。 QGT 的目标是从一个尺寸为$n的数据集中检测有缺陷的物品, 以计数测量, 每一个都计算选定项目库中的缺陷数量。 虽然大多数文献都考虑使用随机噪音或无噪音测量的组合式QGT, 我们的目标是确定测量数量的基本限值, 称为 emph{ 集合的复杂程度 。 由于检测不可能完美, 采用了部分检测标准。 对抗性噪音由 $d_ nn =\ Theta (ndelta) 标定, 且检测标准确保不大于 $k_n =\\\ tata(nkappoppa) 值, 我们的目标是确定测量数量的基本限值, 称为 emph { 集合的复杂程度 ; 以及提供精确的测量计划构造, 最优化的集合复杂性和高效的解析算值。 我们首先显示, 基底限是 $\\\\\\\ xxx 的基值, 值设置一个固定的 值值值值值值值值值值值, 。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员