The discrete gradient methods are integrators designed to preserve invariants of ordinary differential equations. From a formal series expansion of a subclass of these methods, we derive conditions for arbitrarily high order. We derive specific results for the average vector field discrete gradient, from which we get P-series methods in the general case, and B-series methods for canonical Hamiltonian systems. Higher order schemes are presented, and their applications are demonstrated on the H\'enon-Heiles system and a Lotka-Volterra system, and on both the training and integration of a pendulum system learned from data by a neural network.
翻译:离散梯度方法是用来保存普通差分方程变量的集成器。 从这些方法的一个小类的正式系列扩展中,我们得出任意高顺序的条件。我们从平均矢量字段离散梯度(一般情况下我们从中获得P系列方法)和卡通汉密尔顿系统B系列方法中得出具体结果。提出了更高顺序方案,并在H\'enon-Heiles系统和Lotka-Volterra系统以及从神经网络数据中学习的顶部系统的培训和整合上展示了它们的应用。