The two components for infinite exchangeability of a sequence of distributions $(P_n)$ are (i) consistency, and (ii) finite exchangeability for each $n$. A consequence of the Aldous-Hoover theorem is that any node-exchangeable, subselection-consistent sequence of distributions that describes a randomly evolving network yields a sequence of random graphs whose expected number of edges grows quadratically in the number of nodes. In this note, another notion of consistency is considered, namely, delete-and-repair consistency; it is motivated by the sense in which infinitely exchangeable permutations defined by the Chinese restaurant process (CRP) are consistent. A goal is to exploit delete-and-repair consistency to obtain a nontrivial sequence of distributions on graphs $(P_n)$ that is sparse, exchangeable, and consistent with respect to delete-and-repair, a well known example being the Ewens permutations \cite{tavare}. A generalization of the CRP$(\alpha)$ as a distribution on a directed graph using the $\alpha$-weighted permanent is presented along with the corresponding normalization constant and degree distribution; it is dubbed the Permanental Graph Model (PGM). A negative result is obtained: no setting of parameters in the PGM allows for a consistent sequence $(P_n)$ in the sense of either subselection or delete-and-repair.


翻译:分配序列$( P_n) 的无限互换性的两个组成部分是 (一) 一致性和 (二) 每一美元的有限互换性。 Aldous-Hoover 理论的一个结果是, 描述随机变化网络的可互换性、 亚选举- 共性分布序列产生一系列随机图, 其边缘的预期数量在节点数中以四度增长。 在本说明中, 考虑另一个一致性概念, 即删除和repair 参数的一致性; 它的动机是中国餐馆流程(CRP)定义的无限互换性一致性。 一个目标是利用模式- 互换性一致性, 以获得一个分散、 可互换和与删除- 平价数字相一致的无边顺序。 一个众所周知的例子就是删除- 和real- real 参数的一致性概念; 将中国餐厅流程(CRP_\alpha) 定义的可无限互换性平价调价(mod- pal-ral-ral-ral) 用于永久平流度的平流度。 和正平平平平平平平平平级的平平平平平级的平平平平平平平平平平的平平平平平平平平平平平的平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平的分布的分布。 平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平的分布的平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
8+阅读 · 2018年3月17日
Top
微信扫码咨询专知VIP会员