Video anomaly detection aims to find the events in a video that do not conform to the expected behavior. The prevalent methods mainly detect anomalies by snippet reconstruction or future frame prediction error. However, the error is highly dependent on the local context of the current snippet and lacks the understanding of normality. To address this issue, we propose to detect anomalous events not only by the local context, but also according to the consistency between the testing event and the knowledge about normality from the training data. Concretely, we propose a novel two-stream framework based on context recovery and knowledge retrieval, where the two streams can complement each other. For the context recovery stream, we propose a spatiotemporal U-Net which can fully utilize the motion information to predict the future frame. Furthermore, we propose a maximum local error mechanism to alleviate the problem of large recovery errors caused by complex foreground objects. For the knowledge retrieval stream, we propose an improved learnable locality-sensitive hashing, which optimizes hash functions via a Siamese network and a mutual difference loss. The knowledge about normality is encoded and stored in hash tables, and the distance between the testing event and the knowledge representation is used to reveal the probability of anomaly. Finally, we fuse the anomaly scores from the two streams to detect anomalies. Extensive experiments demonstrate the effectiveness and complementarity of the two streams, whereby the proposed two-stream framework achieves state-of-the-art performance on four datasets.


翻译:视频异常检测的目的是在不符合预期行为的视频中找到事件。 流行的方法主要是通过片段重建或未来框架预测错误来检测异常现象。 但是, 错误高度取决于当前片段的当地背景, 缺乏对正常性的理解。 为了解决这一问题, 我们提议不仅根据当地背景, 并且根据测试活动与培训数据对正常性的认识的一致性来检测异常事件。 具体地说, 我们提议了一个基于背景恢复和知识检索的新颖的双流框架, 两个流可以相互补充。 对于背景恢复流, 我们提议了一个可全面利用运动信息预测未来框架的超时U- Net 。 此外, 我们提出一个最大本地错误机制, 以缓解由复杂地面物体造成的大规模恢复错误问题。 对于知识回收流, 我们建议改进可学习的对地点敏感的散列, 通过Siamese网络优化拟议的功能, 相互差异损失。 关于正常性的知识被编码并存储在两个背景恢复流中。 对于背景的系统, 我们提议了一个可充分使用移动 UNet 的信息, 并且 测试两个周期中的数据流之间的距离 。 我们测量了两个变相的概率 。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
271+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
271+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员