Video anomaly detection aims to discover abnormal events in videos, and the principal objects are target objects such as people and vehicles. Each target in the video data has rich spatio-temporal context information. Most existing methods only focus on the temporal context, ignoring the role of the spatial context in anomaly detection. The spatial context information represents the relationship between the detection target and surrounding targets. Anomaly detection makes a lot of sense. To this end, a video anomaly detection algorithm based on target spatio-temporal context fusion is proposed. Firstly, the target in the video frame is extracted through the target detection network to reduce background interference. Then the optical flow map of two adjacent frames is calculated. Motion features are used multiple targets in the video frame to construct spatial context simultaneously, re-encoding the target appearance and motion features, and finally reconstructing the above features through the spatio-temporal dual-stream network, and using the reconstruction error to represent the abnormal score. The algorithm achieves frame-level AUCs of 98.5% and 86.3% on the UCSDped2 and Avenue datasets, respectively. On the UCSDped2 dataset, the spatio-temporal dual-stream network improves frames by 5.1% and 0.3%, respectively, compared to the temporal and spatial stream networks. After using spatial context encoding, the frame-level AUC is enhanced by 1%, which verifies the method's effectiveness.
翻译:视频异常现象检测旨在发现视频中的异常事件,而主要对象则是人和车辆等目标对象。视频数据中的每个目标都拥有丰富的时空背景信息。 大多数现有方法仅侧重于时间背景,忽略了空间环境在异常探测中的作用。 空间背景信息代表了检测目标与周围目标之间的关系。 异常检测非常有意义。 为此, 提出了基于目标spatio- 时空环境聚合的视频异常检测算法。 首先, 视频框中的目标通过目标检测网络提取,以减少背景干扰。 随后, 计算了两个相邻框架的光流图。 在视频框中, 运动特征使用多个目标目标同时构建空间环境, 重编目标外观和运动特征, 并最终通过双流双流网络重建上述特征, 并使用重建错误来代表异常得分。 该算在UCSDAPD2和大道数据集架上达到了98.5%和86.3%的框架。 在视频框架中, 将UCSDA-SB2和双流流数据框架分别用于SDIS-ral-ral-ral-ral 的系统, 将U-x-x-x-x-x-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx