We consider the problem of quantum state certification, where we are given the description of a mixed state $\sigma \in \mathbb{C}^{d \times d}$, $n$ copies of a mixed state $\rho \in \mathbb{C}^{d \times d}$, and $\varepsilon > 0$, and we are asked to determine whether $\rho = \sigma$ or whether $\| \rho - \sigma \|_1 > \varepsilon$. When $\sigma$ is the maximally mixed state $\frac{1}{d} I_d$, this is known as mixedness testing. We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $\rho$ at a time. Unlike those that use entangled, multi-copy measurements, these can be implemented without persistent quantum memory and thus represent a large class of protocols that can be run on current or near-term devices. For mixedness testing, there is a folklore algorithm which uses incoherent measurements and only needs $O(d^{3/2} / \varepsilon^2)$ copies. The algorithm is non-adaptive, that is, its measurements are fixed ahead of time, and is known to be optimal for non-adaptive algorithms. However, when the algorithm can make arbitrary incoherent measurements, the best known lower bound is only $\Omega (d^{4/3} / \varepsilon^2)$ [Bubeck-Chen-Li '20], and it has been an outstanding open problem to close this polynomial gap. In this work, 1) we settle the copy complexity of mixedness testing with incoherent measurements and show that $\Omega (d^{3/2} / \varepsilon^2)$ copies are necessary, and 2) we show the instance-optimal bounds for state certification to general $\sigma$ first derived by [Chen-Li-O'Donnell '21] for non-adaptive measurements also hold for arbitrary incoherent measurements. Qualitatively, our results say that adaptivity does not help at all for these problems. Our results are based on new techniques that allow us to reduce the problem to understanding certain matrix martingales, which we believe may be of independent interest.
翻译:我们考虑量子状态认证问题, 我们被请求确定 $\ rho =\ graph $, 或者 $\\ rho -\ gmas = $. 3 >\ valeplal $。 当 美元是最高混合的测量 $\rho\ = mathb{C\ d\ time d} $, 美元是量子认证 $, 美元 = = 美元, 我们被要求确定 美元= = graph $, 或者 美元 = = 20 或 美元 = = 美元 = 美元 = = 美元 = 美元 = = 美元 = = = 美元 = = = = 美元 = = = = = = = = = = = 美元 = = = 美元 = = 美元 = = 美元 = = 美元 = = 美元= 以当前或 美元 = = 以 以 美元= 以 以 美元= 以 以 以 以 以 = = 以 以 以 以 = = = = 以 以 以 以 以 = 以 = = 以 以 = 以 以 以 以 以 = = = 以 以 以 以 = 以 以 以 以 以 以 = = 以 以 以 = 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 表示 以 以 以 以 以 以 以 以 以 以 以 以 以 以 表示 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 表示 以 表示