Measuring the (causal) direction and strength of dependence between two variables (events), Xi and Xj , is fundamental for all science. Our survey of decades-long literature on statistical dependence reveals that most assume symmetry in the sense that the strength of dependence of Xi on Xj exactly equals the strength of dependence of Xj on Xi. However, we show that such symmetry is often untrue in many real-world examples, being neither necessary nor sufficient. Vinod's (2014) asymmetric matrix R* in [-1, 1] of generalized correlation coefficients provides intuitively appealing, readily interpretable, and superior measures of dependence. This paper proposes statistical inference for R* using Taraldsen's (2021) exact sampling distribution of correlation coefficients and the bootstrap. When the direction is known, proposed asymmetric (one-tail) tests have greater power.
翻译:衡量两个变量(活动)(Xi和Xj)之间依赖性(因果)的方向和强度是所有科学的基础。我们对数十年统计依赖性文献的调查表明,大多数假设的对称性在于,Xi对Xj的依赖性强度完全等于Xj对Xi的依赖性强度。然而,我们表明,在许多现实世界实例中,这种对称性往往不真实,既不必要也不足够。维诺德在普遍相关系数[-1,1]中的2014年不对称矩阵R* 提供了直觉的吸引力、易于解释和更高的依赖性衡量标准。本文提出了使用Taraldsen的(2021年)相关系数和靴杆的精确抽样分布的R* 统计推论。当发现方向时,拟议的不对称(单尾)测试具有更大的力量。