Motivated by the problem of maintaining data structures for a large sets of points that are evolving over the course of time, we consider the problem of maintaining a set of labels assigned to the vertices of a tree, where the locations of these labels change over time. We study the problem in the evolving data framework, where labels change over time due to the action of an agent called the evolver. The algorithm can only track these changes by explicitly probing individual nodes of the tree. This framework captures the tradeoff between the complexity of maintaining an up-to-date view of the structure and the quality of results computed with the available view. Our results allow for both randomized and adversarial evolution of the data, subject to allowing different speedup factors between the algorithm and the evolver. We show that in the limit, our algorithm maintains labels to within an average distance of $O(1)$ of their actual locations. We also present nearly matching lower bounds.
翻译:以维持数据结构为动力,以维持在一段时间内不断演变的一大批点的数据结构问题为动力,我们考虑了保持分配给树顶部的一组标签的问题,这些标签的位置随着时间的变化而变化。我们研究了演变中的数据框架的问题,在这种框架中,标签由于一个名为进化器的代理人的动作而随着时间的变化而变化。算法只能通过明确探测树上的单个节点来跟踪这些变化。这个框架抓住了保持对结构和根据现有视图计算的结果的质量的最新视图的复杂性之间的权衡。我们的结果允许数据随机和对立的演变,但允许算法和进化器之间有不同的加速因素。我们表明,在极限中,我们的算法将标签维持在实际位置的平均距离1美元的范围内。我们还有近乎更低的界限。