Advanced manufacturing techniques have enabled the production of materials with state-of-the-art properties. In many cases however, the development of physics-based models of these techniques lags behind their use in the lab. This means that designing and running experiments proceeds largely via trial and error. This is sub-optimal since experiments are cost-, time-, and labor-intensive. In this work we propose a machine learning framework, differential property classification (DPC), which enables an experimenter to leverage machine learning's unparalleled pattern matching capability to pursue data-driven experimental design. DPC takes two possible experiment parameter sets and outputs a prediction of which will produce a material with a more desirable property specified by the operator. We demonstrate the success of DPC on AA7075 tube manufacturing process and mechanical property data using shear assisted processing and extrusion (ShAPE), a solid phase processing technology. We show that by focusing on the experimenter's need to choose between multiple candidate experimental parameters, we can reframe the challenging regression task of predicting material properties from processing parameters, into a classification task on which machine learning models can achieve good performance.
翻译:先进的制造技术使得能够生产具有最先进特性的材料。 但是,在许多情况下,这些技术的物理模型的开发落后于实验室中的使用。这意味着实验的设计和运行主要通过试验和错误进行。这是次最佳的,因为实验是成本、时间和劳力密集型的。在这项工作中,我们提出了一个机器学习框架,即差异财产分类(DPC),使实验者能够利用机器学习的无与伦比的模型匹配能力来进行数据驱动的实验设计。DPC采用两种可能的实验参数和产出,预测将产生一种具有操作者所指定的更可取特性的材料。我们展示了DPC在AAA7075管制造过程和机械财产数据上的成功,这是使用一个实实在在的加工和挤压技术(SHAPE),我们证明,通过侧重于实验者需要选择多个候选实验参数,我们可以重新界定从处理参数中预测材料特性的具有挑战性的回归任务,而机器学习模型能够取得良好性能的分类任务。