This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(\varepsilon/H)^{d/2}$; $\varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization.
翻译:本文为模型随机扩散问题的数字随机同质化提供了局部正方位分解法(LOD)的主要误差分析。如果模型问题中统一的椭圆形和捆绑随机系数领域是固定的,符合以光谱差距不平等形式出现的量化变异假设,那么该方法预期的2美元误差可以估计为对数系数,最高为$H+(\varepsilon/H) ⁇ d/2}; $\varepsilon是随机系数的细相关长度,而确定空间分辨率的粗数有限元素网块宽度为$H美元。 证据将数字同质化和定量同质化的最新结果连接起来。