The computation of probability density functions (PDF) using approximate maps (surrogate models) is a building block in such diverse fields as forward uncertainty quantification (UQ), sampling algorithms, learning, and inverse problems. In these settings, the probability measure of interest is induced by an unknown map from a known probability space to the real line, i.e., the measure of interest is a pushforward of another known measure. In computation, we do not know the true map, but only an approximate one. In the field of UQ, the generalized Polynomial Chaos (gPC) method is widely popular and yields excellent approximations of the map and its moment. But can the pushforward PDF be approximated with spectral accuracy as well? In this paper, we prove the first results of this kind. We provide convergence rates for PDFs using colocation and Galerkin gPC methods in all dimensions, guaranteeing exponential rates for analytic maps. In one dimension, we provide more refined results with stronger convergence rates, as well as an alternative proof strategy based on optimal-transport techniques.
翻译:使用近似地图( 覆盖模型) 计算概率密度函数( PDF) 是多个领域的基石, 如远期不确定性量化( UQ) 、 抽样算法、 学习和反向问题 。 在这些环境中, 未知的概率度量由未知的地图从已知概率空间引至真实线, 也就是说, 利息度量是另一个已知测量方法的推进。 在计算中, 我们不知道真实的地图, 但只知道近似 。 在 UQ 领域, 普遍的多元混杂( gPC) 方法广受欢迎, 并产生地图及其时刻的极近似值 。 但是, 向前 PDF 能否与光谱准确性相近? 在本文中, 我们证明这种类型的初步结果 。 我们提供PDF 在所有维度上使用同位和 Galerkin gPC 方法的趋同率, 保证解析地图的指数率 。 在一个方面, 我们提供更精确的结果, 以更强的趋同率, 以及基于最佳运输技术的替代证据战略 。