The nonconforming virtual element method (NCVEM) for the approximation of the weak solution to a general linear second-order non-selfadjoint indefinite elliptic PDE in a polygonal domain is analyzed under reduced elliptic regularity. The main tool in the a priori error analysis is the connection between the nonconforming virtual element space and the Sobolev space $H^1_0(\Omega)$ by a right-inverse $J$ of the interpolation operator $I_h$. The stability of the discrete solution allows for the proof of existence of a unique discrete solution, of a discrete inf-sup estimate and, consequently, for optimal error estimates in the $H^1$ and $L^2$ norms. The explicit residual-based a posteriori error estimate for the NCVEM is reliable and efficient up to the stabilization and oscillation terms. Numerical experiments on different types of polygonal meshes illustrate the robustness of an error estimator and support the improved convergence rate of an adaptive mesh-refinement in comparison to the uniform mesh-refinement.
翻译:对多边形域中一般线性二阶非自相联的无限期椭圆形PDE的微软解决办法近似不兼容的虚拟元件方法(NCVEM),在减少椭圆常规性的情况下进行分析。先验错误分析的主要工具是不兼容的虚拟元件空间与Sobolev空间的不兼容虚拟元件方法($H1_0(Omega)美元)之间的联系,由内推操作员右反转美元($I_h$)计算。离散解决办法的稳定性使得能够证明存在一种独特的离散解决办法、一种离散的内嵌估计,从而证明对1美元和2美元规范的最佳误差估计。对于NCVVEM的明显残余误差估计可靠而有效,可达到稳定性和振动条件。对不同类型多边间线的数值实验表明误算器的坚固性,支持在与统一微模模模模的比较中,调整性微缩成像的合并率得到改善。