In this paper, we learn visual features that we use to first build a map and then localize a robot driving autonomously across a full day of lighting change, including in the dark. We train a neural network to predict sparse keypoints with associated descriptors and scores that can be used together with a classical pose estimator for localization. Our training pipeline includes a differentiable pose estimator such that training can be supervised with ground truth poses from data collected earlier, in our case from 2016 and 2017 gathered with multi-experience Visual Teach and Repeat (VT&R). We insert the learned features into the existing VT&R pipeline to perform closed-loop path following in unstructured outdoor environments. We show successful path following across all lighting conditions despite the robot's map being constructed using daylight conditions. Moreover, we explore generalizability of the features by driving the robot across all lighting conditions in new areas not present in the feature training dataset. In all, we validated our approach with 35.5 km of autonomous path following experiments in challenging conditions.
翻译:在本文中,我们学习了我们用来首先绘制地图的视觉特征,然后将一个机器人在包括黑暗地带在内的整个照明变化日光天化日之下自主驾驶。我们训练了一个神经网络,以预测与相关描述符和分数相关的稀疏关键点,这些点可以与古典示示示示示测地定位仪一起使用。我们的培训管道包括一个可区别的面貌估测器,这样就可以用早先收集的数据,用从地面真理中收集的数据对培训进行监督,在我们2016年和2017年以多经验视觉教学和重复(VT&R)收集的数据中。我们把学到的特征插入了现有的VT&R管道,以便在无结构的室外环境中运行闭路路径。我们展示了所有照明条件的成功路径,尽管机器人地图是利用日光条件建造的。此外,我们探索了在特征培训数据集中未存在的所有新区域驾驶机器人的照明条件的特征的通用性。我们验证了我们的方法,在具有挑战性条件下进行实验的35.5公里自主路径。