In this work, we discuss the task of finding a direction of optimal descent for problems in Shape Optimisation and its relation to the dual problem in Optimal Transport. This link was first observed in a previous work which sought minimisers of a shape derivative over the space of Lipschitz functions which may be closely related to the $\infty$-Laplacian. We provide some results of shape optimisation using this novel Lipschitz approach, highlighting the difference between the Lipschitz and $W^{1,\infty}$ semi-norms. After this, we provide an overview of the necessary results from Optimal transport in order to make a direct link to the Shape optimisation of star-shaped domains. Demonstrative numerical experiments are provided.
翻译:在这项工作中,我们讨论了为“形状优化”问题寻找最佳下降方向的任务及其与“最佳交通”双重问题的关系,这一联系最初是在以前的一项工作中发现的,该项工作寻求在利普西茨函数空间上最小化一种形状衍生物,这种衍生物可能与“美元”-“拉普拉西兹”功能密切相关。我们利用这种新颖的“利普西茨”方法提供了形状优化的一些结果,突出了利普西茨和“1美元”/“infty”半“诺姆”之间的差别。此后,我们概述了“最佳交通”的必要结果,以便直接连接到“星形域”的形状优化。我们提供了示范性的数字实验。