We take inspiration from the Okounkov-Vershik approach to the representation theory of the symmetric groups to develop a new way of understanding how the Schur-Weyl duality can be used to perform the Quantum Schur Transform. The Quantum Schur Transform is a unitary change of basis transformation between the computational basis of $(\mathbb{C}^d)^{\otimes n}$ and the Schur-Weyl basis of $(\mathbb{C}^d)^{\otimes n}$. We describe a new multigraph, which we call the Schur-Weyl-Young graph, that represents both standard Weyl tableaux and standard Young tableaux in the same diagram. We suggest a major improvement on Louck's formula for calculating the transition amplitudes between two standard Weyl tableaux appearing in adjacent levels of the Schur-Weyl-Young graph for the case $d=2$, merely by looking at the entries in the two tableaux. The key theoretical component that underpins our results is the discovery of a branching rule for the Schur-Weyl states, which we call the Schur-Weyl branching rule. This branching rule allows us to perform the change of basis transformation described above in a straightforward manner for any $n$ and $d$.
翻译:我们从Okounkov-Vershik对对称组代表性理论的思考中得到启发。 我们描述了一种新的多面图,我们称之为Schur-Weyl-Young图,它代表了标准Wel 桌和同一图中的标准的Youth台。我们建议对Louck公式进行重大改进,以计算位于Schur-Weyl-Young图相邻水平的两个标准Weyl平面板之间的过渡平面值,只要查看两张表的条目即可。我们得出结果的关键理论组成部分是发现一个“Schur-Weyl-Young图”和同一图中的标准YouTure表。我们建议对Louck公式进行重大改进,以计算位于Schur-Weyl-Young图相邻水平的两个标准Wel表之间的过渡平面值值值,只要查看两张表的条目即可。我们得出结果的关键理论组成部分是发现一个“Schur-Wel-Wel”规则的直径值值基础,从而可以执行Schur-Wel-hyl 规则的正值基础。