We provide a universal construction of the category of finite-dimensional C*-algebras and completely positive trace-nonincreasing maps from the rig category of finite-dimensional Hilbert spaces and unitaries. This construction, which can be applied to any dagger rig category, is described in three steps, each associated with their own universal property, and draws on results from dilation theory in finite dimension. In this way, we explicitly construct the category that captures hybrid quantum/classical computation with possible nontermination from the category of its reversible foundations. We discuss how this construction can be used in the design and semantics of quantum programming languages.
翻译:我们从有限维度 C* 代数类别和从有限维度 Hilbert 空间和单词钻机类别中完全正面的不增加的微量地图中,对有限维度 C* 代数类别和完全正面的不增加的地图进行了普遍构建。这一构建可以适用于任何匕首钻机类别,分为三个步骤,每个步骤都与其本身的普遍财产有关,并借鉴了有限维度的放大理论结果。这样,我们明确构建了一个类别,从可逆基础类别中捕捉混合量子/古典计算,可能从可逆基础类别中排除。我们讨论了如何将这一构建用于量子编程语言的设计和定义。