Current computer vision tasks based on deep learning require a huge amount of data with annotations for model training or testing, especially in some dense estimation tasks, such as optical flow segmentation and depth estimation. In practice, manual labeling for dense estimation tasks is very difficult or even impossible, and the scenes of the dataset are often restricted to a small range, which dramatically limits the development of the community. To overcome this deficiency, we propose a synthetic dataset generation method to obtain the expandable dataset without burdensome manual workforce. By this method, we construct a dataset called MineNavi containing video footages from first-perspective-view of the aircraft matched with accurate ground truth for depth estimation in aircraft navigation application. We also provide quantitative experiments to prove that pre-training via our MineNavi dataset can improve the performance of depth estimation model and speed up the convergence of the model on real scene data. Since the synthetic dataset has a similar effect to the real-world dataset in the training process of deep model, we also provide additional experiments with monocular depth estimation method to demonstrate the impact of various factors in our dataset such as lighting conditions and motion mode.


翻译:目前基于深层学习的计算机愿景任务需要大量数据说明,用于示范培训或测试,特别是光学流动分解和深度估计等密集估计任务。在实践中,对密集估计任务进行人工标记非常困难,甚至不可能,数据集的场景往往限于小范围,这大大限制了社区的发展。为克服这一缺陷,我们提议了一个合成数据集生成方法,以便在没有繁重的人工劳动力的情况下获得可扩展的数据集。我们采用这种方法,建造了一个称为MineNavi的数据集,其中包含飞机第一视视景的视频片段,与准确的地面真相相匹配,以进行飞机导航应用的深度估计。我们还提供定量实验,证明通过MineNavi数据集进行预先培训可以改进深度估计模型的性能,加快模型在实际现场数据上的趋同速度。由于合成数据集具有与深层模型培训过程中真实世界数据集的类似效果,我们还以单层深度估计方法提供额外的实验,以显示我们数据集中各种因素的影响,例如照明条件和运动模式。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Data-driven modeling of beam loss in the LHC
Arxiv
0+阅读 · 2022年8月18日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员