Simple and robust algorithms are developed for compressible Euler equations with the stiffened gas equation of state (EOS), representing gaseous mixtures in thermal equilibrium and without chemical reactions. These algorithms use a fully conservative approach in finite volume framework for approximating the governing equations. Also, these algorithms used central schemes with controlled numerical diffusion for this purpose. Both Mass fraction (Y ) and $\gamma$ based models are used with RICCA and MOVERS+ algorithms to resolve the basic features of the flow fields. These numerical schemes are tested thoroughly for pressure oscillations and preservation of the positivity of mass fraction at least in the first-order numerical methods. Several test cases in both 1D and 2D are presented to demonstrate the robustness and accuracy of the numerical schemes.
翻译:简单和稳健的算法是为压缩的Euler方程式和坚固的状态气体方程式(EOS)开发的,代表热平衡和无化学反应的气体混合物。这些算法采用完全保守的有限体积框架来接近支配方程式。此外,这些算法为此使用了控制数字扩散的中央办法。质量分数(Y)和以$\gamma$为基础的模型都与RICCA和MOVES+ 算法一起用于解决流量字段的基本特征。这些数字方法经过彻底测试,以便至少在第一级数字方法中进行压力振荡和维护质量部分的可视性。在1D和2D两种方法中都提出了几个测试案例,以证明数字方法的稳健性和准确性。