Spectral residual methods are powerful tools for solving nonlinear systems of equations without derivatives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method can greatly improve its efficiency and robustness. In the present work, an R implementation of the method is presented. Numerical experiments with a widely used test bed compares the presented approach with its plain (i.e. non-accelerated) version that makes part of the R package BB. Additional numerical experiments compare the proposed method with NITSOL, a state-of-the-art solver for nonlinear systems. The comparison shows that the acceleration process greatly improves the robustness of its counterpart included in the existent R package. As a by-product, an interface is provided between R and the consolidated CUTEst collection, which contains over a thousand nonlinear programming problems of all types and represents a standard for evaluating the performance of optimization methods.


翻译:光谱残存方法是解决无衍生物等式的非线性系统的有力工具。最近的一份文件显示,基于序列精密方法的加速技术可以大大提高其效率和稳健性。在目前的工作中,介绍了该方法的R实施情况。用广泛使用的测试床进行的数字实验将采用的方法与其平面(即非加速)版本进行比较,该版本使R包B的一部分成为了这一版本的一部分。将拟议方法与非线性系统最先进的NITSOL(NITSOL)进行比较的额外数字实验。该比较表明,加速进程大大提高了现有R包中对应方的稳健性。作为副产品,在R和合并的CUTEst收藏之间提供了接口,后者包含所有类型的一千多个非线性编程问题,是评估优化方法性能的标准。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员