In this work, we propose a deep learning-based method to perform semiparametric regression analysis for spatially dependent data. To be specific, we use a sparsely connected deep neural network with rectified linear unit (ReLU) activation function to estimate the unknown regression function that describes the relationship between response and covariates in the presence of spatial dependence. Under some mild conditions, the estimator is proven to be consistent, and the rate of convergence is determined by three factors: (1) the architecture of neural network class, (2) the smoothness and (intrinsic) dimension of true mean function, and (3) the magnitude of spatial dependence. Our method can handle well large data set owing to the stochastic gradient descent optimization algorithm. Simulation studies on synthetic data are conducted to assess the finite sample performance, the results of which indicate that the proposed method is capable of picking up the intricate relationship between response and covariates. Finally, a real data analysis is provided to demonstrate the validity and effectiveness of the proposed method.
翻译:在这项工作中,我们建议了一种深层次的基于学习的方法,对空间依赖性数据进行半参数回归分析。具体地说,我们使用一个连接极少的深神经网络,有纠正线性单元(RELU)激活功能,以估计描述空间依赖性情况下反应和共变之间关系的未知回归函数。在某些温和条件下,估计值被证明是一致的,趋同率由三个因素决定:(1)神经网络类结构,(2)真实平均功能的平滑和(内在)层面,(3)空间依赖度。我们的方法可以处理由于随机梯度梯度梯度下位优化算法而设置的庞大数据。对合成数据进行模拟研究,以评估有限的样本性能,研究结果表明,拟议的方法能够收集反应和共变的复杂关系。最后,提供了真实的数据分析,以证明拟议方法的有效性和有效性。