We present PiFeNet, an efficient and accurate real-time 3D detector for pedestrian detection from point clouds. We address two challenges that 3D object detection frameworks encounter when detecting pedestrians: low expressiveness of pillar features and small occupation areas of pedestrians in point clouds. Firstly, we introduce a stackable Pillar Aware Attention (PAA) module for enhanced pillar features extraction while suppressing noises in the point clouds. By integrating multi-point-aware-pooling, point-wise, channel-wise, and task-aware attention into a simple module, the representation capabilities are boosted while requiring little additional computing resources. We also present Mini-BiFPN, a small yet effective feature network that creates bidirectional information flow and multi-level cross-scale feature fusion to better integrate multi-resolution features. Our approach is ranked 1st in KITTI pedestrian BEV and 3D leaderboards while running at 26 frames per second (FPS), and achieves state-of-the-art performance on Nuscenes detection benchmark.
翻译:我们介绍PiFeNet, 高效、准确的实时三维探测器, 用于从点云中探测行人。 我们应对三维天体探测框架在探测行人时遇到的两个挑战: 界碑特征的清晰度低和指云中行人占地面积小。 首先, 我们引入了可叠叠的柱子注意模块, 用于强化界碑特征的提取, 同时抑制点云中的噪音。 通过将多点观测集合、 点对点、 频道和任务认知的注意整合到一个简单的模块中, 代表能力得到了增强, 而不需要额外的计算资源。 我们还展示了小型- BiFPN, 这是一个小型但有效的特征网络, 创建双向信息流动和多层次跨规模的特征融合, 以便更好地整合多分辨率特征。 我们的方法在 KITTI 人行人BEV 和 3D 头板中排名第1位, 运行在每秒26个框架( 方位), 并在 Nuscenes 检测基准上实现最新业绩 。