Designing recommendation systems with limited or no available training data remains a challenge. To that end, a new combinatorial optimization problem is formulated to generate optimized item selection for experimentation with the goal to shorten the time for collecting randomized training data. We first present an overview of the optimized item selection problem and a multi-level optimization framework to solve it. The approach integrates techniques from discrete optimization, unsupervised clustering, and latent text embeddings. We then discuss how to incorporate optimized item selection with active learning as part of randomized exploration in an ongoing fashion.
翻译:设计培训数据有限或没有可用培训数据的建议系统仍是一项挑战。为此,设计了一个新的组合优化问题,以产生最佳的实验项目选择,目的是缩短随机收集培训数据的时间。我们首先概述了最佳项目选择问题,并提出了解决这一问题的多层次优化框架。该方法整合了离散优化、无人监督的组合和潜在文字嵌入的技术。然后我们讨论了如何将优化项目选择与积极学习相结合,作为随机探索的一部分,持续进行。