Recommender systems often face heterogeneous datasets containing highly personalized historical data of users, where no single model could give the best recommendation for every user. We observe this ubiquitous phenomenon on both public and private datasets and address the model selection problem in pursuit of optimizing the quality of recommendation for each user. We propose a meta-learning framework to facilitate user-level adaptive model selection in recommender systems. In this framework, a collection of recommenders is trained with data from all users, on top of which a model selector is trained via meta-learning to select the best single model for each user with the user-specific historical data. We conduct extensive experiments on two public datasets and a real-world production dataset, demonstrating that our proposed framework achieves improvements over single model baselines and sample-level model selector in terms of AUC and LogLoss. In particular, the improvements may lead to huge profit gain when deployed in online recommender systems.
翻译:建议者系统常常面临包含用户高度个性化历史数据的多种数据集,其中没有一个单一模型能够给每个用户提供最佳建议。我们观察公共和私人数据集中这种普遍存在的现象,并解决模式选择问题,力求优化每个用户的建议质量。我们提议了一个元学习框架,以便利在推荐者系统中选择用户一级适应性模式。在这个框架中,对所有用户的数据进行了建议者的培训,此外,通过元学习培训了模型选择者,以便为每个用户选择拥有用户特定历史数据的最佳单一模型。我们广泛试验了两个公共数据集和真实世界生产数据集,表明我们提议的框架在单一模型基线和样本级模型选择器方面,在AUC和Log LobLos方面实现了改进。特别是,如果在在线推荐者系统中部署,改进可能会带来巨大的利润。