The starting point of this paper is the problem of scheduling $n$ jobs with processing times and due dates on a single machine so as to minimize the total processing time of tardy jobs, i.e., $1||\sum p_j U_j$. This problem was identified by Bringmann et al. (Algorithmica 2022) as a natural subquadratic-time special case of the classic $1||\sum w_j U_j$ problem, which likely requires time quadratic in the total processing time $P$, because of a fine-grained lower bound. Bringmann et al.~obtain their $\tilde{O}(P^{7/4})$ time scheduling algorithm through a new variant of convolution, dubbed Max-Min Skewed Convolution, which they solve in $\tilde{O}(n^{7/4})$ time. Our main technical contribution is a faster and simpler convolution algorithm running in $\tilde{O}(n^{5/3})$ time. It implies an $\tilde{O}(P^{5/3})$ time algorithm for $1||\sum p_j U_j$, but may also be of independent interest. Inspired by recent developments for the Subset Sum and Knapsack problems, we study $1||\sum p_j U_j$ parameterized by the maximum job processing time $p_{\max}$. With proximity techniques borrowed from integer linear programming (ILP), we show structural properties of the problem that, coupled with a new dynamic programming formulation, lead to an $\tilde{O}(n+p_{\max}^3)$ time algorithm. Moreover, in the setting with multiple machines, we use similar techniques to get an $n \cdot p_{\max}^{O(m)}$ time algorithm for $Pm||\sum p_j U_j$. Finally, we point out that the considered problems exhibit a particular triangular block structure in the constraint matrices of their ILP formulations. In light of recent ILP research, a question that arises is whether one can devise a generic algorithm for such a class of ILPs. We give a negative answer to this question: we show that already a slight generalization of the structure of the scheduling ILP leads to a strongly NP-hard problem.


翻译:本文的起始点是将一个处理时间和到期日期的UP 工作安排在一台机器上,以便最大限度地减少延迟工作的总处理时间, 也就是说, 1zz sum p_ j U_ j$。 Bringmann 等人( Agorithmica 2022) 将这一问题确定为经典的 $sum w_j dical_ j_ j j$ 问题的自然次赤道时间特例。 我们的主要技术贡献可能要求在整个处理时间里, 美元( Pdrout) 中进行时间反调 。 Bringmann 和 Al. 保持它们最近的 $tilde{O} (P\ 7/4} 美元) 的处理时间, 通过新的演算方式, Max- Min Skead Convolution 解答一个问题。 我们的主要技术贡献是, 一个快速和简单的递增的算算法问题, 以美元计 美元计价调 美元 =O} (n=xxxxx max lax lax lax lax lax lax lax lax lax lax lax lax lax) lax a max max max a max lax max max max

0
下载
关闭预览

相关内容

归纳逻辑程序设计(ILP)是机器学习的一个分支,它依赖于逻辑程序作为一种统一的表示语言来表达例子、背景知识和假设。基于一阶逻辑的ILP具有很强的表示形式,为多关系学习和数据挖掘提供了一种很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是学习结构化或半结构化关系数据的首要国际论坛。最初专注于逻辑程序的归纳,多年来,它大大扩展了研究范围,并欢迎在逻辑学习、多关系数据挖掘、统计关系学习、图形和树挖掘等各个方面作出贡献,学习其他(非命题)基于逻辑的知识表示框架,探索统计学习和其他概率方法的交叉点。官网链接:https://ilp2019.org/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员