Retrieval-based conversational systems learn to rank response candidates for a given dialogue context by computing the similarity between their vector representations. However, training on a single textual form of the multi-turn context limits the ability of a model to learn representations that generalize to natural perturbations seen during inference. In this paper we propose a framework that incorporates augmented versions of a dialogue context into the learning objective. We utilize contrastive learning as an auxiliary objective to learn robust dialogue context representations that are invariant to perturbations injected through the augmentation method. We experiment with four benchmark dialogue datasets and demonstrate that our framework combines well with existing augmentation methods and can significantly improve over baseline BERT-based ranking architectures. Furthermore, we propose a novel data augmentation method, ConMix, that adds token level perturbations through stochastic mixing of tokens from other contexts in the batch. We show that our proposed augmentation method outperforms previous data augmentation approaches, and provides dialogue representations that are more robust to common perturbations seen during inference.


翻译:以检索为基础的对话系统通过计算其矢量表达方式之间的相似性,学会对特定对话背景的应答候选人进行排序。然而,关于多点背景单一文本形式的培训限制了模型学习概括在推论期间所见自然扰动的表述模型的能力。在本文件中,我们提议了一个框架,将对话背景的扩大版本纳入学习目标。我们利用对比学习作为辅助目标,学习强健的对话背景表述,这些表达方式不易通过扩增方法注入扰动。我们试验了四个基准对话数据集,并表明我们的框架与现有的增强方法相结合,并且能够大大改进基于BERT的基线排名结构。此外,我们提议了一种新的数据增强方法,即ConMix,通过将批量中其他场合的符号混杂在一起,增加象征性水平的扰动。我们表明,我们提议的增强方法超越了先前的数据增强方法,并提供了更强有力的对话表达方式,使之比推断过程中看到的常见扰动。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月3日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员