Few-shot knowledge graph (KG) completion task aims to perform inductive reasoning over the KG: given only a few support triplets of a new relation $\bowtie$ (e.g., (chop,$\bowtie$,kitchen), (read,$\bowtie$,library), the goal is to predict the query triplets of the same unseen relation $\bowtie$, e.g., (sleep,$\bowtie$,?). Current approaches cast the problem in a meta-learning framework, where the model needs to be first jointly trained over many training few-shot tasks, each being defined by its own relation, so that learning/prediction on the target few-shot task can be effective. However, in real-world KGs, curating many training tasks is a challenging ad hoc process. Here we propose Connection Subgraph Reasoner (CSR), which can make predictions for the target few-shot task directly without the need for pre-training on the human curated set of training tasks. The key to CSR is that we explicitly model a shared connection subgraph between support and query triplets, as inspired by the principle of eliminative induction. To adapt to specific KG, we design a corresponding self-supervised pretraining scheme with the objective of reconstructing automatically sampled connection subgraphs. Our pretrained model can then be directly applied to target few-shot tasks on without the need for training few-shot tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and ConceptNet, demonstrate the effectiveness of our framework: we show that even a learning-free implementation of CSR can already perform competitively to existing methods on target few-shot tasks; with pretraining, CSR can achieve significant gains of up to 52% on the more challenging inductive few-shot tasks where the entities are also unseen during (pre)training.


翻译:略微少见的知识图表( KG) 完成任务的目的是对 KG 进行直导推理 : 当前的方法在元学习框架中将问题呈现出来, 模型需要首先在多个远程任务上联合培训, 每项任务都由自身关系来界定, 因而对目标G 点任务进行学习/定位是有效的。 然而, 在现实世界 KGs 中, 解释许多培训任务是一个具有挑战性的预选过程。 我们在这里建议连接 Subgraph Eriorer (CSR) 能够直接对目标二手任务做出预测, 而无需在人文剖析任务上进行预培训: 模型需要先在多个远程任务上进行联合培训, 每个任务都由自身关系来界定, 这样在目标G- 点任务上进行学习时, 直观的K- 目标G- 方向任务需要我们直接地调整一个共同的亚精度任务。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员