The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the latest methods in machine learning for modeling complex spatial systems over time. In this edition, our dynamic road graph data combine information from road maps, $10^{12}$ probe data points, and stationary vehicle detectors in three cities over the span of two years. While stationary vehicle detectors are the most accurate way to capture traffic volume, they are only available in few locations. Traffic4cast 2022 explores models that have the ability to generalize loosely related temporal vertex data on just a few nodes to predict dynamic future traffic states on the edges of the entire road graph. In the core challenge, participants are invited to predict the likelihoods of three congestion classes derived from the speed levels in the GPS data for the entire road graph in three cities 15 min into the future. We only provide vehicle count data from spatially sparse stationary vehicle detectors in these three cities as model input for this task. The data are aggregated in 15 min time bins for one hour prior to the prediction time. For the extended challenge, participants are tasked to predict the average travel times on super-segments 15 min into the future - super-segments are longer sequences of road segments in the graph. The competition results provide an important advance in the prediction of complex city-wide traffic states just from publicly available sparse vehicle data and without the need for large amounts of real-time floating vehicle data.
翻译:全球城市化趋势以及个人流动性的提高迫使我们重新思考我们的生活和使用城市空间的方式。 交通4播送 2022 竞争系列以数据驱动的方式解决这个问题, 推进最新的机器学习方法, 在一段时间内建模复杂的空间系统。 在本版中, 我们的动态路面图数据将来自路线图、 10+12美元 探查点和固定的车辆探测器两年内在三个城市的信息结合起来。 虽然固定的车辆探测器是捕捉交通量的最准确方法, 仅在少数几个地方提供。 交通4播送 2022 探索了能够以数据驱动的方式推广与松散相关的时间顶点数据的模式, 仅用几个节点来预测整个道路图边缘的动态未来交通状况。 在核心挑战中, 请与会者预测未来三个城市的全球定位系统数据速度水平中的三个拥堵舱位的可能性 15 分钟后, 我们只能提供来自这三座城市空间稀少的固定车辆探测器的车辆计数数据, 作为这项任务的模范输入。 数据以15 分钟时间汇总为15分钟内与松散的交通流量的平流数据, 在15小时前, 一个小时内, 大规模预测中, 高级的进度中, 将数据 。</s>