Three critical issues for causal inference that often occur in modern, complicated experiments are interference, treatment nonadherence, and missing outcomes. A great deal of research efforts has been dedicated to developing causal inferential methodologies that address these issues separately. However, methodologies that can address these issues simultaneously are lacking. We propose a Bayesian causal inference methodology to address this gap. Our methodology extends existing causal frameworks and methods, specifically, two-staged randomized experiments and the principal stratification framework. In contrast to existing methods that invoke strong structural assumptions to identify principal causal effects, our Bayesian approach uses flexible distributional models that can accommodate the complexities of interference and missing outcomes, and that ensure that principal causal effects are weakly identifiable. We illustrate our methodology via simulation studies and a re-analysis of real-life data from an evaluation of India's National Health Insurance Program. Our methodology enables us to identify new active causal effects that were not identified in past analyses. Ultimately, our simulation studies and case study demonstrate how our methodology can yield more informative analyses in modern experiments with interference, treatment nonadherence, missing outcomes, and complicated outcome generation mechanisms.


翻译:现代复杂实验中常见的三个关键问题是干扰、治疗不依从和缺失结果。关于这些问题分别已有很多研究工作致力于开发因果推断方法。然而,同时处理这些问题的方法仍然缺乏。我们提出了一种贝叶斯因果推断方法来解决这个问题。我们的方法扩展了已有的因果框架和方法,具体而言是两阶段随机实验和主要分层框架。与现有的方法不同,它们提出了强结构假设来识别主因果效应,我们的贝叶斯方法使用灵活的分布模型来适应干扰和缺失结果的复杂性,确保主要因果效应是弱可辨识的。我们通过模拟研究和再分析印度国家医疗保险计划的实际数据来说明我们的方法。我们的方法使我们能够识别以前分析没有识别出来的新的主动因果效应。最终,我们的模拟研究和案例研究证明了我们的方法可以在现代实验中处理干扰、治疗不依从、缺失结果和复杂的结果生成机制,并提供了更多有信息量的分析。

0
下载
关闭预览

相关内容

征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员