We consider in this work the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in the spatial and the interaction component in the drift, and non-constant Lipschitz diffusion coefficient. The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view, we avoid altogether functional inequality arguments (as we allow for non-constant non-bounded diffusion maps). The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of $1/2-\varepsilon$ for $\varepsilon>0$ and an optimal rate $1/2$ in the non-path-space mean-square error metric. Numerical examples illustrate all findings. In particular, the testing raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and non-constant diffusion coefficients).
翻译:本文考虑了包含全超线性增长空间和交互作用的漂移以及非常数Lipschitz扩散系数的相互作用粒子随机微分方程(SDE)系统和麦肯 - 弗拉索夫(SDE)。交互作用(或测度)部分的超线性增长来自于带有超线性增长函数的卷积运算,特别适用于具有多个势阱的颗粒介质方程。从方法论的角度出发,我们完全避免了函数不等式论证(因为我们允许非常数和未被界定的扩散映射)。该方案在步长方面实现了接近最优的经典(路径空间)均方根误差率$1 / 2-\varepsilon$,其中$\varepsilon>0$,并在非路径空间均方误差度量中实现了最优速率$1 / 2$。数值示例说明了所有结果。特别是,测试提出了对于这种具有卷积项和非常数扩散系数的问题,驯服是否合适的方法论疑问。