The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to series of computational techniques for numerical solutions. In machine learning, numerous latest advances of solver designs are accomplished in developing neural operators, a kind of mesh-free approximators of the infinite-dimensional operators that map between different parameterization spaces of equation solutions. Although neural operators exhibit generalization capacities for learning an entire PDE family simultaneously, they become less accurate and explainable while learning long-term behaviours of non-linear PDE families. In this paper, we propose Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional linear operator governing all possible observations of the dynamic system, to act on the flow mapping of dynamic system, we can equivalently learn the solution of an entire non-linear PDE family by solving simple linear prediction problems. In zero-shot prediction and long-term prediction experiments on representative PDEs (e.g., the Navier-Stokes equation), KNO exhibits notable advantages in breaking the tradeoff between accuracy and efficiency (e.g., model size) while previous state-of-the-art models are limited. These results suggest that more efficient PDE solvers can be developed by the joint efforts from physics and machine learning.


翻译:缺乏多种部分差异方程式(PDEs)的解析性解决方案的缺乏导致一系列计算技术的计算数字解决方案的诞生。在机器学习中,在开发神经操作器方面,求解器设计的许多最新进步都是在开发神经操作器方面实现的,这种神经操作器在绘制方程式不同参数空间之间的图的无限维操作器的无线匹配器。虽然神经操作器展示了同时学习全PDE家族(PDE)的概括性能力,但它们变得不那么准确和可以解释。在本文中,我们提议建立一个新的神经操作器(Koopman)神经操作器(KNO),这是一个新的神经操作器,以克服这些挑战。同样的目标是学习Banach空间之间的无线性绘图,这是作为目标PDE的全线性操作器。我们的方法与现有的模型不同,它开发了一个非线性动态系统全线性动态系统所有可能的观测操作器,通过动态系统的流动图绘制,我们可以同等地学习整个非线性PDE的精确度模型的解决方案, 并且通过简单线性模型预测Simalal-laimal laimal laimal laimal laim latial latial latial latial lavial laview lacutural latial latial lacutural laviews

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员