We complete the study of the model introduced in [11]. It is a two-color urn model with multiple drawing and random (non-balanced) time-dependent reinforcement matrix. The number of sampled balls at each time-step is random. We identify the exact rates at which the number of balls of each color grows to infinity and define two strongly consistent estimators for the limiting reinforcement averages. Then we prove a Central Limit Theorem, which allows to design a statistical test for such averages.
翻译:我们完成了对[11] 中引入的模型的研究。 它是一个双色骨质模型, 包含多个绘图和随机( 不平衡的) 时间依赖的增强矩阵。 每个时间步骤的样本球数是随机的。 我们确定每个颜色的球数增长到无限的确切速率, 并为限制增强平均值确定两个非常一致的估算值。 然后我们证明一个中央限制理论, 从而可以设计一个此类平均值的统计测试 。