Employing wireless systems with dual sensing and communications functionalities is becoming critical in next generation of wireless networks. In this paper, we propose a robust design for over-the-air federated edge learning (OTA-FEEL) that leverages sensing capabilities at the parameter server (PS) to mitigate the impact of target echoes on the analog model aggregation. We first derive novel expressions for the Cramer-Rao bound of the target response and mean squared error (MSE) of the estimated global model to measure radar sensing and model aggregation quality, respectively. Then, we develop a joint scheduling and beamforming framework that optimizes the OTA-FEEL performance while keeping the sensing and communication quality, determined respectively in terms of Cramer-Rao bound and achievable downlink rate, in a desired range. The resulting scheduling problem reduces to a combinatorial mixed-integer nonlinear programming problem (MINLP). We develop a low-complexity hierarchical method based on the matching pursuit algorithm used widely for sparse recovery in the literature of compressed sensing. The proposed algorithm uses a step-wise strategy to omit the least effective devices in each iteration based on a metric that captures both the aggregation and sensing quality of the system. It further invokes alternating optimization scheme to iteratively update the downlink beamforming and uplink post-processing by marginally optimizing them in each iteration. Convergence and complexity analysis of the proposed algorithm is presented. Numerical evaluations on MNIST and CIFAR-10 datasets demonstrate the effectiveness of our proposed algorithm. The results show that by leveraging accurate sensing, the target echoes on the uplink signal can be effectively suppressed, ensuring the quality of model aggregation to remain intact despite the interference.
翻译:暂无翻译