We propose a method to solve online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we are able to greatly speedup the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the Voice of Optimization framework proposed in [BS20]. In this way the core part of the optimization algorithm becomes a multiclass classification problem which can be solved very quickly. In this work we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization (MIQO). We propose an extremely fast online optimization algorithm consisting of a feedforward neural network (NN) evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver nor iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations (flops) required to completely recover the optimal solution as a function of the problem dimensions. Compared to state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining from two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization and motion planning with obstacle avoidance.
翻译:我们建议采用机器学习方法,以非常高速解决在线混合整形优化(MIO)问题。通过利用在线优化的重复性,我们能够大大加快解决方案的解决时间。我们的方法将最佳解决方案编码成少量信息,用[BS20] 中提议的优化声音框架作为战略。这样,优化算法的核心部分就成为一个多级分类问题,可以很快解决。在这项工作中,我们将这一框架扩大到实时和高速应用程序,重点是对准混合整形优化(MIQO),我们提议了一个极快的在线优化算法,包括一个向导神经网络(NNN)反馈评估和一个线性系统解决方案,在信息总计算和计量执行时间两方面都不需要任何解决方案或迭接的算法。我们估计了需要从总计算到衡量执行时间的浮动点组合操作数量,以完全恢复最佳解决方案作为问题解决速度层面的功能。我们提议了一个极快的在线优化算法,比我们的标准标准标准、比标准标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、比标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、标准、