We consider the problem of dividing limited resources between a set of agents arriving sequentially with unknown (stochastic) utilities. Our goal is to find a fair allocation - one that is simultaneously Pareto-efficient and envy-free. When all utilities are known upfront, the above desiderata are simultaneously achievable (and efficiently computable) for a large class of utility functions. In a sequential setting, however, no policy can guarantee these desiderata simultaneously for all possible utility realizations. A natural online fair allocation objective is to minimize the deviation of each agent's final allocation from their fair allocation in hindsight. This translates into simultaneous guarantees for both Pareto-efficiency and envy-freeness. However, the resulting dynamic program has state-space which is exponential in the number of agents. We propose a simple policy, HopeOnline, that instead aims to `match' the ex-post fair allocation vector using the current available resources and `predicted' histogram of future utilities. We demonstrate the effectiveness of our policy compared to other heurstics on a dataset inspired by mobile food-bank allocations.
翻译:我们考虑的是将有限资源分成一组按顺序抵达的代理商(随机)公用设施之间的有限资源问题。 我们的目标是找到一个公平的分配办法,即既公平分配,同时又具有Pareto效率和无嫉妒性。当所有公用设施都为人所知时,对于一大批类型的公用设施而言,上述拆分是同时可以实现的(并有效地计算)。然而,在按顺序排列的环境下,没有任何政策能够保证这些拆分能够同时实现所有可能的公用设施。一个自然的在线公平分配目标是尽可能减少每个代理商的最后分配与其在事后的公平分配之间的偏差。这可以同时转化为对Pareto效率和无嫉妒性的保证。然而,由此产生的动态方案具有州际空间,在代理商数量上呈指数指数化。我们提出一个简单的政策,即HopeOnline,其目的是利用现有资源和“预定的”未来公用设施图“匹配”事后的公平分配矢量。我们展示了我们的政策与其他由移动粮食银行分配的数据集上的超值。