In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $\varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $\tilde O(\varepsilon^{-5/2})$ to produce an $\varepsilon$-stationary point under the Slater's condition. When the constraint functions are non-convex, the complexity becomes $\tilde O(\varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $\tilde O(\varepsilon^{-4})$ if a feasible initial solution is available.


翻译:本文针对限制优化问题研究了一种不精确的准点惩罚方法, 其目标函数为非电解质, 约束功能也可以为非电解质。 拟议的方法可以解决子问题序列, 每个子问题都是通过在原始目标函数中添加一个与约束功能相关的近似值和四度惩罚条件来形成的。 在弱调度假设下, 每种子问题都具有很强的共性, 并且可以通过一种基于最佳梯度的方法有效地解决到所要求的准确性 。 拟议的方法的计算复杂性将针对 convex 约束和非电解质制约的情况分别分析 。 对于这两种情况, 复杂性的结果都是根据找到 $\ varepsil$- 固定点所需的准度梯度步骤的数量来确定的。 当制约功能是 contilde O(\ vareplon_ 5⁄ /2} 美元, 我们展示了一个复杂的结果 $\\ varepilexlon$- $- ylor- explain requil=nal deal destrivil a constal destal destrations) a contistrital destritations. 如果 Slats- revl=n=n ex

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月20日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
4+阅读 · 2018年11月20日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员