Point-cloud-based 3D classification task involves aggregating features from neighbor points. In previous works, each source point is often selected as a neighbor by multiple center points. Thus each source point has to participate in calculation multiple times with high memory consumption. Meanwhile, to pursue higher accuracy, these methods rely on a complex local aggregator to extract fine geometric representation, which slows down the network. To address these issues, we propose a new local aggregator of linear complexity, coined as APP. Specifically, we introduce an auxiliary container as an anchor to exchange features between the source point and the aggregating center. Each source point pushes its feature to only one auxiliary container, and each center point pulls features from only one auxiliary container. This avoids the re-computation of each source point. To facilitate the learning of the local structure, we use an online normal estimation module to provide the explainable geometric information to enhance our APP modeling capability. The constructed network is more efficient than all the previous baselines with a clear margin while only occupying a low memory. Experiments on both synthetic and real datasets verify that APP-Net reaches comparable accuracies with other networks. We will release the complete code to help others reproduce the APP-Net.
翻译:基于点球的 3D 分类 任务涉及从相邻点集合特征。 在以往的工程中, 每个源点往往被多个中心点选择为邻居。 因此, 每个源点必须参与多次计算, 并使用高内存消耗量。 同时, 为了追求更高的准确性, 这些方法依靠复杂的本地聚合器来提取精细的几何表示法, 从而减缓网络的运行速度。 为了解决这些问题, 我们提出了一个新的线性复杂度本地聚合器, 以APP 形式创建。 具体地说, 我们引入了一个辅助容器作为源点和集点之间交换特征的锚点。 每个源点将其特性推向一个辅助容器, 每个中心点只能从一个辅助容器拉动特性。 这避免了对每个源点的重新计算。 为了便利对本地结构的学习, 我们使用一个在线正常的估算模块来提供可以解释的几何信息, 以加强我们的APP 模型能力。 所构建的网络比以往所有基线都有效,, 以明确的边距来交换点,, 并且只保持低的记忆。 实验合成和真实的数据集都验证 AP- 网络 到其他网络 。 我们将释放到其它网络的代码 。